Theta method
Notations
Let be \(\mathbf{q}\) be a field function of time \(t\) and \(\mathbf{\dot q}, \mathbf{\ddot q}\) be its first and second derivatives with respect to time, \[ \begin{aligned} \mathbf{q} &= \mathbf{q}(t)\\ \mathbf{\dot q} &= \frac{\mathrm{d} \mathbf{q}}{\mathrm{d} t}\\ \mathbf{\ddot q} &= \frac{\mathrm{d} \mathbf{\dot q}}{\mathrm{d} t}\\ \end{aligned} \] In order to make the description of the time integration algorithms less abstract, one can think of $,, $ as position, velocity and acceleration. Moreover, the balance of momentum equation is considered for a concrete derivation of the scheme. Therefore, \[ \notag \mathbf M \mathbf{\ddot q} +\mathbf{f} = 0 \quad \text{where} \quad \mathbf{f} = \mathbf{f}\left(\mathbf{q}(t),\mathbf{\dot q}(t)\right) \] The mass matrix \(\mathbf{M}\) is assumed constant. In addition, to facilitate the notations, the superscripts involving \(t\) will be used to denote time points such that \(\mathbf{q}^{t+\tau} = \mathbf{q}(t+\tau)\) represents the discrete value of \(\mathbf{q}\) at time \(t+\tau\), while subscript involving \(n\) as in \(\mathbf{q}_n^t\) will represent the value of \(\mathbf{q}^t\) at some iteration \(n\). The symbol \(\tau\) represents the timestep.
Wilson-θ method
The Wilson-θ method is defined as \[ \left\{\begin{aligned} \frac{\mathbf{q}^{t+\tau}-\mathbf{q}^t}{\tau} &= (1-\theta)\mathbf{\dot q}^{t}+\theta\mathbf{\dot q}^{t+\tau}&&\theta\in\mathbb [0,1]\\ \frac{\mathbf{\dot q}^{t+\tau}-\mathbf{\dot q}^t}{\tau} &= (1-\theta)\mathbf{\ddot q}^{t}+\theta\mathbf{\ddot q}^{t+\tau}\\ \mathbf{M}\mathbf{\ddot q}^{t+\tau} + \mathbf{f}^{t+\tau}&=0 \end{aligned} \right. \]
One can recognize the explicit Euler (\(\theta=0\)), the implicit midpoint (\(\theta=\tfrac{1}{2}\)), and the implicit Euler (\(\theta=1\)). Since the value of \(\mathbf{\ddot q}\) is not generally needed, it can be substituted in the \(\mathbf{\dot q}\) term \[ \notag \begin{eqnarray*} \left\{\begin{aligned} \mathbf{q}^{t+\tau}&=\mathbf{q}^t + \tau\left((1-\theta)\mathbf{\dot q}^t+\theta\mathbf{\dot q}^{t+\tau}\right)\\ \mathbf{M}\mathbf{\dot q}^{t+\tau} &= \mathbf{M}\mathbf{\dot q}^t - \tau\left((1-\theta)\mathbf{f}^t+\theta\mathbf{f}^{t+\tau}\right) \end{aligned} \right. \end{eqnarray*} \]
With the residual form \[ \begin{eqnarray*} \begin{aligned} \mathrm{R}=\begin{bmatrix}\mathrm{R}_q\\ \mathrm{R}_\dot q\end{bmatrix}= \begin{bmatrix} &\mathbf{q}^{t+\tau}-\mathbf{q}^t -\tau\left((1-\theta)\mathbf{\dot q}^t+\theta\mathbf{\dot q}^{t+\tau}\right) \\ &\mathbf{M}\left(\mathbf{\dot q}^{t+\tau} - \mathbf{\dot q}^t\right) + \tau\left((1-\theta)\mathbf{f}^t+\theta\mathbf{f}^{t+\tau}\right) \\ \end{bmatrix} \end{aligned}=0 \end{eqnarray*} \] Now, if we replace \(\mathbf{q}^{t+\tau}\) by \(\mathbf{q}^{t+\tau}_n\!\!\!+\!\Delta\mathbf{q}\) where \(\mathbf{q}^{t+\tau}_n\) is an approximation of \(\mathbf{q}^{t+\tau}\) which we assume known and \(\Delta\mathbf{q}\) a little nudge needed to reach the solution (and do similarly to its time derivatives), we have \[ \left\{\begin{aligned} \mathbf{q}^{t+\tau}_n+\Delta\mathbf{q}&=\mathbf{q}^t + \tau\left((1-\theta)\mathbf{\dot q}^t+\theta(\mathbf{\dot q}^{t+\tau}_n+\Delta\mathbf{\dot q})\right)\\ \mathbf{M}(\mathbf{\dot q}^{t+\tau}_n+\Delta\mathbf{\dot q}) &= \mathbf{M}\mathbf{\dot q}^t - \tau\left((1-\theta)\mathbf{f}^t+\theta\mathbf{f}^{t+\tau}_{n+1}\right) \end{aligned}\right. \quad\text{where} \quad \mathbf{f}^{t+\tau}_{n+1} = \mathbf{f}^{t+\tau}_n\!(\mathbf{q}^{t+\tau}_n\!\!+\!\Delta\mathbf{q},\mathbf{\dot q}^{t+\tau}_n\!\!+\!\Delta\mathbf{\dot q}) \] Taylor approximation of the force term \(\mathbf{f}^{t+\tau}_{n+1}\) yields \[ \begin{aligned} \mathbf{f}^{t+\tau}_{n+1} &\approx \mathbf{f}^{t+\tau}_{n} +\frac{\partial\mathbf{f}^{t+\tau}_n}{\partial\mathbf{q}}\Delta\mathbf{q}+\frac{\partial \mathbf{f}^{t+\tau}_n}{\partial\mathbf{\dot q}}\Delta\mathbf{\dot q}\\ &\approx \mathbf{f}^{t+\tau}_{n} + \mathbf K_n\Delta\mathbf{q}+\mathbf D_n\Delta\mathbf{\dot q} \end{aligned} \] Where \(\mathbf K, \mathbf D\) are recognized as the tangent stiffness and damping matrix, respectively. \[ \notag \mathbf{M}\Delta\mathbf{\dot{q}} = \mathbf{M}(\mathbf{\dot{q}}^t-\mathbf{\dot{q}}^{t+\tau}_n) -\tau\left((1-\theta)\mathbf{f}^t+\theta\mathbf{f}^{t+\tau}_{n}\right) -\theta\tau(\mathbf{K}_n\Delta\mathbf{q}+\mathbf{D}_n\Delta\mathbf{\dot{q}}) \] Substituting \(\Delta\mathbf{q}\) yields \[ \begin{aligned} \left(\mathbf{M}+\theta\tau\mathbf{D}_n+\theta^2\tau^2\mathbf{K}_n\right)\Delta\mathbf{\dot{q}}&= \mathbf{M}\left(\mathbf{\dot q}^t-\mathbf{\dot q}^{t+\tau}_n\right) -\tau\left((1-\theta)\mathbf{f}^t+\theta\mathbf{f}^{t+\tau}_{n}\right) -\theta\tau\mathbf{K}_n\left(\mathbf{q}^t-\mathbf{q}^{t+\tau}_n+\tau\left((1-\theta)\mathbf{\dot q}^t+\theta\mathbf{\dot q}^{t+\tau}\right) \right) \\ &= -\mathrm{R}_{\dot{q},n} +\theta\tau\mathbf{K}_n\mathrm{R}_{q,n} \end{aligned} \]
The overall procedure consists in repeating the cycle below, given \(\mathbf{q}^{t+\tau}_0\) and \(\mathbf{\dot{q}}^{t+\tau}_0\), until \(\Vert\Delta\mathbf{\dot{q}}\Vert<\text{threshold}\) \[ \begin{equation} \begin{aligned} \left(\mathbf{M}+\tau\mathbf{D}_n+\tau^2\mathbf{K}_n\right)\Delta\mathbf{\dot{q}}&= -\mathrm{R}_{\dot{q},n} +\tau\mathbf{K}\mathrm{R}_{q,n} \\ \mathbf{\dot{q}}^{t+\tau}_{n+1}&=\mathbf{\dot{q}}^{t+\tau}_n+\Delta\mathbf{\dot{q}} \\ \mathbf{q}^{t+\tau}_{n+1} &= \mathbf{q}^t + \tau\left((1-\theta)\mathbf{\dot q}^t+\theta\mathbf{\dot q}^{t+\tau}\right) \\ \mathbf{f}^{t+\tau}_{n+1} &= \mathbf{f}\left(\mathbf{q}^{t+\tau}_{n+1},\mathbf{\dot q}^{t+\tau}_{n+1}\right) \end{aligned} \label{eq:iteration_unrolled} \end{equation} \] It is possible to reach the same the solution by applying Newton’s method \[ \notag \mathrm{R}_n+\frac{\mathrm{d}\mathrm R_n}{\mathrm{d}\{\mathbf q^{t+\tau},\mathbf{\dot q}^{t+\tau}\}}\begin{bmatrix}\mathbf{q}^{t+\tau}_{n+1}-\mathbf{q}^{t+\tau}_{n}\\ \mathbf{\dot q}^{t+\tau}_{n+1}-\mathbf{\dot q}^{t+\tau}_{n}\end{bmatrix} = 0 \]
Which yields \[ \notag \begin{bmatrix} \mathbf{I} & -\theta\tau\mathbf{I} \\ \theta\tau\mathbf{K}_n & \mathbf{M}+\theta\tau\mathbf{D}_n \end{bmatrix} \begin{pmatrix} \Delta\mathbf{q}\\ \Delta\mathbf{\dot{q}}\\ \end{pmatrix} = - \begin{pmatrix} \mathrm{R}_{q,n}\\ \mathrm{R}_{\dot{q},n}\\ \end{pmatrix} \]
Remarks
The unrolled procedure \(\eqref{eq:iteration_unrolled}\) effectively projects \(\mathbf{q}\) to fulfill the residual equation at the end of each iteration. Indeed, \(\mathbf{q}^{t+\tau}_{n+1}\) is explicitly computed to fulfill the residual equation \(\mathrm R_{q} =0\). Therefore, its contribution to the main step is null and can be removed, for \(n\geq1\). \[ \begin{aligned} \left(\mathbf{M}+\theta\tau\mathbf{D}_n+\theta^2\tau^2\mathbf{K}_n\right)\Delta\mathbf{\dot{q}}&= -\mathrm{R}_{\dot{q},n} \\ \mathbf{\dot q}^{t+\tau}_{n+1} &= \mathbf{\dot q}^t + \Delta\mathbf{\dot q} \\ \mathbf{q}^{t+\tau}_{n+1} &= \mathbf{q}^t + \tau\left((1-\theta)\mathbf{\dot q}^t+\theta\mathbf{\dot q}^{t+\tau}_{n+1}\right) \end{aligned} \] ⚠️ This is not necessarily true for the first iteration \(n=0\). Indeed, if \(\mathbf{q}^{t+\tau}_0\) is chosen independently from \(\mathbf{\dot{q}}^{t+\tau}_0\) then \[ \notag \mathbf{q}^{t+\tau}_0 \neq \mathbf{q}^{t}+\tau\left((1-\theta)\mathbf{\dot{q}}^{t}+\theta\mathbf{\dot{q}}^{t+\tau}_0\right) \implies \mathrm R_{q,n} \neq 0 \]
It could still be discarded to simplify the algorithm, at the risk of a slower convergence. This might be particularly interesting in non-linear scenarios, where multiple iterations would anyway be needed to converge. However, in a truncated scheme, halted before convergence after a single or few iterations like in near real-time applications, such approximation might be questionable. Nevertheless, it is commonly omitted.
⚠️ The force term \(\mathbf{f}^{t+\tau}_n\) is computed as \(\mathbf{f}(\mathbf{q}_n^{t+\tau},\mathbf{\dot q}_n^{t+\tau})\). However, at the first iteration, \(\mathbf {f}^{t+\tau}_0\) could also chosen independently from the choices of \(\mathbf{q}^{t+\tau}_0\) and \(\mathbf{\dot{q}}^{t+\tau}_0\) in order to accelerate the convergence of the scheme or simplify its formulation. \[ \notag \mathbf{f}^{t+\tau}_0 \neq \mathbf{f}(\mathbf{q}^{t+\tau}_0,\mathbf{\dot{q}}^{t+\tau}_0) \]